Experimental demonstration of radicaloid character in a Ru(V)=O intermediate in catalytic water oxidation.

نویسندگان

  • Dooshaye Moonshiram
  • Igor Alperovich
  • Javier J Concepcion
  • Thomas J Meyer
  • Yulia Pushkar
چکیده

Water oxidation is the key half reaction in artificial photosynthesis. An absence of detailed mechanistic insight impedes design of new catalysts that are more reactive and more robust. A proposed paradigm leading to enhanced reactivity is the existence of oxyl radical intermediates capable of rapid water activation, but there is a dearth of experimental validation. Here, we show the radicaloid nature of an intermediate reactive toward formation of the O-O bond by assessing the spin density on the oxyl group by Electron Paramagnetic Resonance (EPR). In the study, an (17)O-labeled form of a highly oxidized, short-lived intermediate in the catalytic cycle of the water oxidation catalyst cis,cis-[(2,2-bipyridine)2(H2O)Ru(III)ORu(III)(OH2)(bpy)2](4+) was investigated. It contains Ru centers in oxidation states [4,5], has at least one Ru(V) = O unit, and shows

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Oxidation of 4-Methylpyridine on Modified Vanadium Oxide Catalysts

The reaction of gas-phase oxidation of 4-methylpyridine on individual V2O5, binary and ternary vanadium-oxide catalysts was studied. These catalysts were modified by additives of SnO2 and TiO2. It was found that modifying V2O5 leads to increase the activity of binary contacts. Upon transition from binary V2O5<...

متن کامل

Preparation and performance analysis of γ-Al2O3 supported Cu-Ru bimetallic catalysts for the selective Wet Air Oxidation of Aqueous Ammonia to Nitrogen.

Series of Copper Ruthenium (Cu-Ru) bimetallic catalysts supported on γ-Al2O3 with different metal loading are prepared and investigated for catalytic wet air oxidation of ammonia to nitrogen. The ammonia decomposition activity was studied at three different temperatures i.e. 150oC, 200oC, and 230 oC and it is found that catalytic activity increases with the increase in temperature along with th...

متن کامل

Mechanism of Water Oxidation Catalyzed by a Dinuclear Ruthenium Complex Bridged by Anthraquinone

We synthesized 1,8-bis(2,2′:6′,2”-terpyrid-4′-yl)anthraquinone (btpyaq) as a new dimerizing ligand and determined its single crystal structure by X-ray analysis. The dinuclear Ruthenium complex [Ru2(μ-Cl)(bpy)2(btpyaq)](BF4)3 ([3](BF4)3, bpy = 2,2′-bipyridine) was used as a catalyst for water oxidation to oxygen with (NH4)2[Ce(NO3)6] as the oxidant (turnover numbers = 248). The initial reaction...

متن کامل

Theoretical study of catalytic mechanism for single-site water oxidation process.

Water oxidation is a linchpin in solar fuels formation, and catalysis by single-site ruthenium complexes has generated significant interest in this area. Combining several theoretical tools, we have studied the entire catalytic cycle of water oxidation for a single-site catalyst starting with [Ru(II)(tpy)(bpm)(OH(2))](2+) (i.e., [Ru(II)-OH(2)](2+); tpy is 2,2':6',2''-terpyridine and bpm is 2,2'...

متن کامل

Ruthenium catalysts for water oxidation involving tetradentate polypyridine-type ligands.

A series of Ru(II) complexes that behave as water oxidation catalysts were prepared involving a tetradentate equatorial ligand and two 4-substituted pyridines as the axial ligands. Two of these complexes were derived from 2,9-di-(pyrid-2'-yl)-1,10-phenanthroline (dpp) and examine the effect of incorporating electron-donating amino and bulky t-butyl groups on catalytic activity. A third complex ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 10  شماره 

صفحات  -

تاریخ انتشار 2013